如何检测电气设备中的绝缘故障——第1部分

 如何检测电气设备中的绝缘故障——第1部分

绝缘老化是造成电机、高压变压器和发电机发生电气设备故障的主要原因之一。绝缘故障会导致危险电压、火灾、高故障电流和爆炸,损坏设备和财产,造成人身伤害和死亡事故。绝缘故障的主要原因包括电介质的污染、温度循环、过载、因过电压造成的过大电压应力,以及老化。

让我们来看看绝缘故障的两种不同示例。图1所示为有缺陷的电焊用交流电机的定子绕组,及绕组连接侧烧坏的线圈。图2所示为因缺乏及时预防性维护造成绝缘纸受损,从而造成灾难性故障的变压器。

“图1:有缺陷的电焊用交流电机的定子绕组(图片来源:WindingPhotos)”

图1:有缺陷的电焊用交流电机的定子绕组(图片来源:WindingPhotos)

“图2:变压器的灾难性故障(图片来源:OilRegeneration.com)”

图2:变压器的灾难性故障(图片来源:OilRegeneration.com)

绝缘测试可以在任何故障发生之前找出绝缘老化。

用于测试旋转机械绝缘电阻(IEEE 43-2000)的电气和电子工程师协会(IEEE)推荐规程中描述了测量绝缘电阻的程序,包括旋转机械绕组的典型绝缘电阻特性,以及这些特性如何指示绕组状态。该标准中介绍了用于交流(AC)和直流(DC)旋转机械绕组绝缘电阻的最低可接受值。根据IEEE 43-2000的规定,表明可接受状态的典型绝缘电阻为100MΩ及以上。以该测定为基础,IEEE标准设定的范围如表1中所示。

“”

应用和使用案例

绝缘测量对诸如变压器、太阳能逆变器和工业电机驱动(变速AC / DC驱动器和伺服驱动器)等的终端设备来说很重要;参见图3和图4。

“”

“”

使用一个电阻分压器是测量绝缘电阻的一种简易方法。图5所示为使用这一方法的TINA-TI™模拟电路,在该电路中,两个串联电阻(R12和R2)与绝缘电阻(Riso)并联。流经并联组合的总电流受到R1、R4和直流输入值(按照IEEE 43-2000,通常为500V)的限制。如图6所示,测量 R2两端的电压(这是电流的结果)(VM1)。

“”

图6所示为TINA-TI模拟的测量曲线图。由于电阻的比率,R2两端的电压并不随绝缘电阻(Riso)呈线性变化。电压VM1的测定值几近饱和,同时绝缘电阻值大于15MΩ。

“”

图7所示为电阻分压器法的精度曲线图。在0Ω-22.49MΩ这一范围内,百分比精度小于1%。

“”

表2列出了这种方法的实验结果。正如您所看到的,测得的输出值与先前值相差几乎3mV到4mV。该值的差异说明使用电阻分压器法时,需要一个高分辨率的模数转换器(ADC),这样提高了系统的成本。

“”

用户喜欢...

如何将欧姆定律应用于串联和并联电路

在数学上检查电子电路以确定它们是否将按设计安全且可预测地起作用。 欧姆定律用于计算电路元件的值,确定所需的电压和电流,以及确定电路通电时消耗的功率。 本视频教程解释了欧姆定...


如何快速将NFC功能添加到任何应用程序

为了满足对近场通信(NFC)能力日益增长的需求,开发人员被要求快速创建优化设计。传统方法的发展速度缓慢,因为设计人员面临诸如RF电路优化,NFC协议管理,功耗以及最小设计占用等挑战...


降低机器人风险:如何设计安全的工业环境

工业自动化(IA)的增加,特别是工业机器人的使用,正在增加人类操作员与其他移动设备或移动机器之间的意外交互的机会。设计师有责任采取适当且经常重叠的安全预防措施,以避免从生产...


如何设计可靠,准确的存在感应

随着消费和工业系统变得更智能,更具交互性和更自主,他们需要能够感知对象,用户或路过者的存在。尽管基本的在场感知技术和技术已经很成熟,但设计人员面临着更精确,高效,经济高效...


无论环境如何,都可获得高精度,多通道温度测量

尽管温度测量是许多应用的常见要求,但开发人员在确保高度准确的结果方面面临严峻的挑战。克服这些挑战通常会导致设计复杂和设计周期延长,但新设备正在降低复杂性。 本文简要讨论与...


为增强隔离的电机控制选择检测电阻

电流检测电阻器的使用是电机控制系统设计趋势的一部分,这得益于采用新的数字隔离技术。这些技术为设计人员提供了更高的可靠性水平,基于组件级别标准IEC 60747-17,该标准规定了电容式和...


如何建立一个可扩展的DIY iBeacon

在阅读Eddystone发布后,我对物理网络的概念感到非常兴奋。从200多个通知走出商场的想法在一定程度上蕴藏着我的热情,但是使用iBeacons做广告和销售以外的事情是一个非常有趣的机会。 我有一...


如何使用5.0“gen4 HMI显示器制作自己的数字定时器

你知道你可以轻松地创建自己的数字计时器吗? 您只需要以下材料: gen4-uLCD-50DCT-CLB(125-7950) gen4-PA(106-5303)和FFC电缆 扬声器 uSD卡 uUSB电缆 连接电线和5V电源 这个项目设计有三个功能,数字...


降低机器人风险:如何设计一个安全的工业环境

工业自动化(IA)的增加,尤其是工业机器人的使用,正在增加人类操作员与其他移动设备或移动机器之间的意外交互的机会。设计人员有责任采取适当且经常重叠的安全措施,以避免从生产中...


如何选修开发工业物联网触摸屏

几乎每个嵌入式系统都需要能够在现场更新固件,以添加新功能或修复错误。但是,由于开发人员必须编写自己的引导加载程序或从第三方组件供应商处获得引导加载程序,所以固件字段更新可...


机器学习中如何选择分类器

在机器学习中,分类器作用是在标记好类别的训练数据基础上判断一个新的观察样本所属的类别。分类器依据学习的方式可以分为非监督学习和监督学习。 非监督学习顾名思义指的是给予分...


专家教你利用深度学习检测恶意代码

当前,恶意软件的检测已经成为全社会关注的网络安全焦点,因为许多时候,单个恶意软件就足以导致数百万美元的损失。目前的反病毒和恶意软件检测产品,一般采用的是基于特征的方法,...


七种IoT设备安全检测报告:教你几招辨别物联网设备安全性的简单方法

购物热季来临了,今天我们谈一下物联网设备的安全问题。 各大供应商们陆续推出了许多令人兴奋的物联网设备,并承诺这些设备会让我们的生活变得更简单、更快乐、更舒适。作为一个安...


2018 年趋势:AI 和物联网的未来将会如何?

人工智能和物联网的世界显然是令人兴奋的,但目前看来,依然有一些关键的技术问题需要解决,特别是关于开发者方面的问题。在这篇文章中,大家将会了解到在这些热门领域,有哪些值得...


如何才能实现“通用”型 AI?科学家:从人脑寻找灵感

深度学习在单个领域已经取得了可喜的突破。但是若论综合实力,现在的AI根本无法跟人相比。人是通用学习机器,但AI不是。脑科学家Jeff Hawkins 称科学家需要不断从人脑那里寻找灵感来开发...


边缘计算和雾计算如何改变IoT的应用方式

本文将会介绍边缘计算是什么,在2018年的涨势如何,以及业界应该给予它怎样的关注。 边缘计算:远离核心的移动计算 从根本上来讲,边缘计算是智能和计算从云网络中的集中式数据服务器...