机器学习作用于信息安全的五大顶级案例

 机器学习作用于信息安全的五大顶级案例

通俗讲,机器学习就是“(计算机)无需显式编程即可学习的能力”。跨海量数据集应用数学技术,机器学习算法可建立起行为模型,并基于新输入的数据,用这些模型做出对未来的预测。视频网站根据用户的历史观看记录推出新剧集,自动驾驶汽车从擦肩而过的行人学习路况,都是机器学习的例子。

那么,信息安全中的机器学习应用又是什么呢?

大体上,机器学习可帮助公司企业更好地分析威胁,响应攻击及安全事件;还有助于自动化更琐碎更低级的工作,也就是之前工作量巨大或技术欠缺的安全团队所做的那些。

安全方面,机器学习是个快速发展的趋势。ABI Research 的分析师估测,在网络安全界,机器学习将推动大数据、人工智能(AI)及分析的投资,有望在2021年达到960亿美元,同时,世界科技巨头已经在采取措施更好地保护自己的客户。

谷歌用机器学习来分析安卓移动终端上的威胁——从被感染手机上识别并清除恶意软件。云基础设施巨头亚马逊收购了初创公司 harvest.AI,并发布了Macie——用机器学习来发现、梳理并分类S3云存储上数据的一项服务。

与此同时,企业安全供应商一直努力将机器学习集成进新旧产品线中,希望能改善恶意软检测率。大多数主流安全公司已从纯“基于特征码”的系统,转向了试图解释行为及事件,并从各种源学习判断安全与风险的机器学习系统。这仍是个新兴领域,但明显是未来发展方向。

AI和机器学习将极大改变安全运作方式,虽然目前正处在驱动网络防御的早期阶段,但已经在终端、网络、欺诈或SIEM中,起到了识别恶意活动模式的明显作用。未来,在防御服务中断、属性及用户行为修改等领域,我们将看到越来越多的用例。

机器学习在安全领域的顶级用例有哪些呢?我们不妨来看看以下5个。

1. 用机器学习检测恶意活动并阻止攻击

机器学习算法可帮助公司企业更快速检测恶意活动,并在攻击开始前就予以阻止。英国初创公司Darktrace于2013年成立,其基于机器学习的企业免疫解决方案( Enterprise Immune Solution ),在这方面已取得了很多成功。作为这家公司的技术总监,大卫·帕尔玛见证了机器学习对恶意活动及攻击的影响。

帕尔玛称,利用机器学习算法,Darktrace最近帮助北美一家赌场检测出了数据泄露攻击。该攻击将联网鱼缸用作了进入赌场网络的切入点。该公司还宣称,去年夏天的WannaCry勒索软件大肆虐中,其算法也防止了类似的一起攻击。

针对感染了150个国家20多万受害者的WannaCry勒索软件,帕尔玛称:“在数秒内,我们的算法就检测出了一家国民医疗服务(NHS)机构网络中的攻击,在尚未对该机构造成任何破坏前,此威胁就被缓解掉了。事实上,我们的客户没有任何一家受到WannaCry攻击的伤害,包括那些没打补丁的。”

2. 用机器学习分析移动终端

移动设备上,机器学习已成主流;但到目前为止,绝大部分活动集中在驱动基于语音的体验上,比如 Google Now、苹果的Siri和亚马逊的Alexa。不过,机器学习在安全方面确实有应用。如上文提及的,谷歌采用机器学习来分析移动终端威胁,而企业则在防护自带及自选移动设备上看到了机会。

10月,MobileIron和Zimperium宣布合作,帮助企业将机器学习集成进移动杀软解决方案中。MobileIron将在自己的安全及合规引擎中,集成Zimperium基于机器学习的威胁检测,并作为联合解决方案售出,解决设备、网络及应用威胁检测,快速自动化动作防护公司数据之类的难题。

其他供应商也在计划改善自己的移动解决方案。LookOut、被赛门铁克收购的Skycure,还有Wandera,是移动威胁检测及防御市场中的佼佼者,每家都用自有机器学习算法检测潜在威胁。拿Wandera举个例子。这家公司最近刚公开发布了其威胁检测引擎 MI:RIAM,据称检测出了超过400种针对企业移动设备的SLocker勒索软件变种。

3. 用机器学习增强人类分析

机器学习在安全领域的核心应用,有人认为是帮助人类分析师处理安全方面的各项工作,包括恶意攻击检测、网络分析、终端防护及漏洞评估。但在威胁情报方面,才是最令人兴奋的。

比如说,2016年,麻省理工学院计算机科学和人工智能实验室(CSAIL),开发出了名AI2的系统。这是一个自适应机器学习安全平台,可帮助分析师从海量数据中找出真正有用的东西。该系统每天审查数百万登录,过滤数据,并将滤出内容传给人类分析师,可将警报数量大幅降低至每天100个左右。由CSAIL和初创公司PatternEx共同进行的实验表明,攻击检测率被提升到了85%,而误报率降低至原先的1/5。

4. 用机器学习自动化重复性安全工作

用户喜欢...

S32V234适用于ADAS、NCAP前视摄像头、异物检测和识别、环视、机器学习和传感器融合应用

概述 S32V234是我们的第二代视觉处理器系列,旨在支持图像处理的计算密集型应用,并提供了一个ISP、强大的3D GPU、双APEX-2视觉加速器和安全性,以及支持SafeAssure。S32V234适用于ADAS、NCAP前视摄...


Infineon 面向智能手机、可穿戴设备和服务机器人的无线充电解决方案

Infineon 面向智能手机、可穿戴设备和服务机器人的无线充电解决方案 可确保绝佳用户体验的高性价比系统解决方案 无线电源在市场驱动下一直在不断增长,并且预期未来亦会持续对我们的日常...


机器学习更接近你身边的微控制器

机器学习(ML)是人工智能(AI)的一个分支,多年来一直在电子系统中应用。但是,直到现在,实施ML所需的处理能力大部分都被限制在基于云计算的活动中。然而,这种情况即将发生变化,随...



降低机器人风险:如何设计安全的工业环境

工业自动化(IA)的增加,特别是工业机器人的使用,正在增加人类操作员与其他移动设备或移动机器之间的意外交互的机会。设计师有责任采取适当且经常重叠的安全预防措施,以避免从生产...


降低机器人风险:如何设计一个安全的工业环境

工业自动化(IA)的增加,尤其是工业机器人的使用,正在增加人类操作员与其他移动设备或移动机器之间的意外交互的机会。设计人员有责任采取适当且经常重叠的安全措施,以避免从生产中...


Murata WSM-BL241 Bluetooth® 5.0低功耗模块适合用于智能设备、医疗和保健以及机器对机器 (M2M) 应用

Murata WSM-BL241 Bluetooth5.0低功耗模块 了解MBN52832开发套件详情 Murata WSM-BL241 Bluetooth5.0低功耗 (BLE) 模块可实现超低功率连接,用于数据通信。该模块将Nordic Bluetooth低功耗IC、射频前端和晶体集成到...


机器的崛起

现在是2035年,过去三年里,加利福尼亚州禁止汽车的手动驾驶。许多人追溯到2031年高速公路堆积如山的一场车祸,涉及72辆车,20多人死亡和多起诉讼,最终追溯到一名青少年司机因发短信而分...


LabVIEW图形化系统设计—机器人设计的前沿方法

引言 移动机器人构成复杂、应用灵活,目前商业化程度还不高,相对处于前沿研究的阶段,因此一直以来都是科学家和工程师们关注的重点。 移动机器人具有某些共同的构架和组成部分,是一...


对机器人选择电机的几点思考

机器人执行特定的,定义明确的任务,如装配线工作,手术协助,仓库交付/检索,甚至清理地雷等任务。今天的机器人既可以处理高度重复的任务,又可以处理需要灵活定位和操作的复杂功能...


随着机器人技术的全面发展,供应商对运动控制参考设计做出了回应

随着从液压机器人到全电动机器人执行器的转变,电子元件供应商现在可以提供全面的电机控制参考设计,包括电机,MOSFET和驱动器,处理器,算法甚至电源连接器。 机器人运动系统过去需要...


物联网三阶段演进 市场、安全、人力与并购均有影响

物联网演进可分为三个阶段,一、串连各系统;二、智能互连的对象不仅将终端设备连网,更让设备之间彼此相连,...


[原创] ST STSPIN820+STM32 Nucleo步进马达驱动方案

ST公司的STSPIN820是集成了控制逻辑和低RDSon功率级的步进马达驱动器,控制器采用有固定OFF时间的PWM电流控制,微步距分...


无人驾驶车离现实还有多远?

无人驾驶技术需要达到99.9999999999%的准确度才可能达到真正普及的条件,这似乎是一段不算短的路。...


主流机器学习算法简介与其优缺点分析

机器学习算法的分类是棘手的,有几种合理的分类,他们可以分为生成/识别,参数/非参数,监督/无监督等。 例如,Scikit-Learn的文档页面通过学习机制对算法进行分组。这产生类别如:1,广...


机器学习中如何选择分类器

在机器学习中,分类器作用是在标记好类别的训练数据基础上判断一个新的观察样本所属的类别。分类器依据学习的方式可以分为非监督学习和监督学习。 非监督学习顾名思义指的是给予分...