close
当前位置: 物联网在线 > 通信网络/电信运营商 > M2M > 技术文章 >

亿维:PLC与伺服驱动、负载的某些关系

一、PLC控制器频率与伺服驱动器和负载转速

已知我司伺服驱动器Pm=10000Pulse/r,PLC控制器发出的频率f (puls/s),如何计算负载轴的转速n(r/s),

1、 当伺服电机直接连接轴,设电子齿轮比分子比分母为N。

亿维:PLC与伺服驱动、负载的某些关系

n=(f*N)/Pm ...........此公式求出单位为r/s,1s发的脉冲数除以一圈需要的脉冲数=1s转动的圈数。

n :负载转速,单位: r/s。

f :控制器发出的频率,单位:pls/s。

N:驱动器电子齿轮比。

Pm:伺服驱动器分辨率,单位:Pulse/r。

2、有了1式,可以推理出当负载轴带了转盘或者皮带轮,可以算出皮带的线速度V。

亿维:PLC与伺服驱动、负载的某些关系

V=r*ω=r*2πn

将1式带入 :

V= πd ((f*N)/Pm)

d:皮带轮,负载轴的直径,单位:mm。

n :负载转速,单位: r/s。

f :控制器发出的频率,单位:pls/s。

N:驱动器电子齿轮比。

Pm:伺服驱动器分辨率,单位:Pulse/r。

3、现场可能碰到输出力矩不够,加有减速机的情况,设减速比为K。

亿维:PLC与伺服驱动、负载的某些关系

由1式,已经知道电机轴输出速度n,则可以求出过减速机后输出的转速n1。

n1=n/k=(f*N)/(Pm*K)...............r/s

n1=n/k=(f*N*60)/(Pm*K)...............r/min

假设n1轴带着的是滑块,我们还可以求出滑块移动的速度V

V=n1*D=(f*N*D)/(Pm*K)............mm/s

同理推导出 f=(V*Pm*K)/(N*D)

n :电机直连轴转速,单位: r/s。

n1:减速机后输出的转速,单位: r/s。

K: 减速机减速比。

V: 滑块移动的速度,单位:mm/s。

D:丝杠导程,单位:mm

二 、PLC控制器输出的脉冲与位移之间的关系

有了上面的一些介绍,我们再来讨论下:

如下图,已知我司伺服驱动器Pm=10000Pulse/r,丝杠的导程(螺纹间距,可以理解为电机转一圈丝杠走一个导程)为D,PLC控制器发出的脉冲个数为P,假设电子齿轮比为1。

如何求对应工作台移动的距离S?

亿维:PLC与伺服驱动、负载的某些关系

 4、S=(D/Pm)*P......先求出1个脉冲走的位移,乘以脉冲个数得到移动的距离。如果设置了电子齿轮比N,则S=(D/Pm)*P*N....因为P*N才是伺服驱动发送给电机的实际脉冲。

D:丝杠导程,单位:mm

P:控制器发送脉冲个数,单位:个

如果是下面这个系统又该如何计算移动的距离呢?系统机械部分加有减速机减速比为K。

亿维:PLC与伺服驱动、负载的某些关系

5、S=(D/(Pm*K))*P*N.........同理4求出一个脉冲走的位移,由于加了减速机,一个脉冲的位移反映到负载轴上比4上面更小。 可以看出位移与系统减速机等齿轮结构成反比关系,与伺服驱动的电子齿轮比成正比关系。

根据上述式子,同理也可以推理出如果是带圆盘结构,脉冲数对应圆盘转动的角度。相当于D=360度。

上面4,5中提到”先求出1个脉冲走的位移”其实就是传说中的脉冲当量δ。

三 、浅谈脉冲当量δ

由4,5可知,(D/Pm)为不加减速机的脉冲当量,D/(Pm*K)为加减速机时,系统的脉冲当量。可以看出如果机械结构确定了,这个值也是确定的,1个脉冲对应走的位移是确定的,即系统的精度是确定的。如5mm导程的丝杠,与亿维伺服驱动直接连接的话,精度为5/10000mm。如果外部带有减速比为40的减速机则这个系统的脉冲当量为5/(10000*40)mm。以上确定的参数称为系统的固有脉冲当量。

假设需要将系统精度调整为1um/pls。需要怎么办呢?这时候伺服驱动的电子齿轮比就派上用场了。

用以下公式可求出:

1:5*1000/(10000*40)=1:1/80=80:1即将亿维US100伺服驱动器的电子齿轮比分子P1-00设置为80,分母P1-01设置为1。


(责任编辑:ioter)

用户喜欢...

华虹半导体力推95纳米eNVM工艺平台 制胜8位MCU市场

全球领先的200mm纯晶圆代工厂——华虹半导体有限公司今天宣布,公司针对8位微控制器(Microcontroller Unit, MCU)市场,...


针对混合电动汽车的功能电子化方案

日益严格的能效及环保法规推动汽车功能电子化趋势的不断增强和混合电动汽车/电动汽车(HEV/EV)的日渐普及,这加大...


[原创] Infineon XMC4200 32位ARM MCU数字电源控制方案

Infineon公司的XMC4100/XMC4200是基于ARM Cortex-M4处理器核的工业应用微处理器(MCU),具有16位和32位Thumb2指令集,DSP/MAC指令,浮点...


六个方法帮助你初学PLC

可编程控制器(简称PLC)入门容易,真正掌握可编程控制器的编程方法,能够顺利设计出满足生产任务的要求,同时程序做到简洁、易懂,对于从事PLC应用的初学者,PLC的系统学习非常重要。...


[原创] ADI AD5767 16路12位denseDAC数模转换器解决方案

ADI公司的AD5767是16路12位电压输出denseDAC数模转换器(DAC), 采用外部2.5 V 基准电压产生输出电压,集成了输出缓冲器,后者...


[原创] Maxim MAX11905 20位单路全差分SAR ADC解决方案

Maxim公司的MAX11905是20位1.6Msps单路全差分SAR ADC,具有极好静态和动态性能,SNR为98.3dB,THD为-123dB,INL为6 LSB,不丢失码20位分辨...


数控系统发展历史 追求的是开放互联

从19世纪50年代第一台数控系统出现到现代开放式数控系统,期间经历了多次重大变化,但是这些变化都局限在单机的...


三相异步电动机种类繁多,该如何选择合适的呢?

三相异步电动机的型号很多,但是我们如何选择合适的三相异步电动机呢?有哪些选择依据呢?大兰电机告诉您在选...


成功更换伺服产品的五个技巧

很多情况下,我们需要采用伺服产品更换方案,例如用一种新伺服电机来取代已有电机。其原因可能包括:产品报废...


步进和伺服电机驱动选型应用速成

步进、伺服电机主要用于精确定位场合,也都可以用于调速应用。步进电机因效率低,一般不做为动力用;因存在一...