数据分析的一些常见问题

大数据

文|西湖小霸王

数据分析和数据挖掘,是大数据应用的核心技术,也是大数据应用的关键所在。

数据分析重要,但是,很多时候却不知道该如何去做,面对大量的数据,却无从下手。概括起来,经常面临的困难有:

分析目的不明确

分析方法不清晰

分析过程不清晰

分析思路不完善

解读数据能力差

1、 不知道要分析什么?(分析目的)

不知道要分析什么,也就是分析目的不明确。

经常有学员告诉我,领导给了一大堆数据给我,要我分析一下,但我不知道要分析什么?除了基本的统计求和,我不知道要干吗。

明确分析目的,这是数据分析的起点,也是分析的终点。所有的分析工作都应该围绕业务问题开始,分析的结果最终也要落到业务问题。

如果目的不明确,后续的分析工作就无法开展了。

大数据

2、 下一步做什么?(分析过程)

数据分析不是一个单一的操作,而是一套复杂和完整的操作流程。

一般地,一个完整的数据分析包括了六个步骤,后一个步骤依赖前一个步骤,也是前一个过程的深入。

当有了分析目的之外,接下来就需要围绕业务问题来收集相关的数据,并对收集来的数据进行预处理(清洗、转化、提取、计算),如果使用FineBI之类的BI工具来处理的话就是先抽取数据、ETL处理数据,然后在前端多维度分析,并对分析结果进行可视化,最后形成一个完整的分析报告,到此,一个数据分析的工作才算正式完成。

大数据

3、 不知道怎样去分析?(分析方法)

分析目的明确了,数据也有了,但面对大量的、复杂的数据,却无从下手,不知道怎样分析,这是由于分析者缺乏对分析方法的了解。

数据分析最核心的工作,就是对数据进行分析。围绕业务问题,采用什么样的分析方法,使用什么样的分析模型,选择什么样的分析工具,这是数据分析的核心。这是分析师的必备技能。

为了便于理解,我将数据分析分为三个层次,从低到高,由浅入深,分别是统计分析,基本分析,数据挖掘。

一般情况下,企业有80%的工作都只需要掌握统计分析方法就可以了,剩下20%的工作需要更深入的分析及挖掘。当然,更深层次的业务规律及业务模式,需要更高层次的数据分析来解决。比如,市场细分,客户特征提取,等等。

4、 看不明白分析结果?(数据解读)

好不容易分析有结果了,统计有数据了,但是,这些数据及分析结果表示什么意思呢?与我们的业务有什么关系呢?这一步也不知道坑了多少学员。

对数据不敏感,解读数据的能力差,无法将分析结果与业务问题和业务策略关联起来,这是数据应用的最大障碍。

如何来解读数据,解读分析结果,这需要有一定的数据解读方法,也需要分析师要了解相应的业务逻辑。

5、 不知道分析是否全面?(分析思路)

我经常收到一些分析师的抱怨,他们说,基本的分析我都会了,但是,每次提交分析报告给领导以后,领导总是不太满意,说我分析不全面,漏此漏那的。分析不全面,这是由于缺乏分析思路导致的。

如果说,分析方法是从微观从细节来对数据进行分析,那么,分析思路,就是从宏观角度指导如何进行数据分析,比如从哪几个方面来进行完整的数据分析而不会遗漏。

要掌握分析思路,需要分析师懂业务、懂管理、懂营销。比如,如果要分析企业的外部环境,你必须要懂得PEST模型,即要从政策、经济、社会和技术四个方面来进行分析,否则就是不全面的;如果要做竞争分析,你需要懂得SWOT、波特五力,从这几个方面来分析竞争态势,才算完整和系统。

最简单,最实用的是5W2H模型,广泛用于企业营销活动、用户行为分析等专题分析中,即要求分析的从下面7个方面来进行分析,这样可以确保能够将用户购买行为分析完整、系统。

大数据

数据分析看起来很简单,但如果没有经过系统的培训,要胜任这项工作也是不容易的。毕竟,数据分析师作为企业主管的智囊,作为主管决策的支撑,其重要性及高要求是不言而喻。

用户喜欢...

物联网三阶段演进 市场、安全、人力与并购均有影响

物联网演进可分为三个阶段,一、串连各系统;二、智能互连的对象不仅将终端设备连网,更让设备之间彼此相连,...


AI和大数据2017“成长的烦恼”

人工智能和大数据在2017年的发展遇到了以下10个成长的烦恼: 1.人工智能无IQ标准 人工智能领域发展最好的一个领域是无人驾驶,而究其原因不外乎其拥有了从L0到L5的全球通用标准。但是在...


大数据和云计算的冲突

最近,IT行业专家在参加相关会议时发现了一个隐藏的主题,那就是虽然很多人将关注的重点转移到基于云计算的架构...


车子自闭了百年,该让车子“出社会”了

汽车一旦具备物联网的感测能力、网络联机能力后,即成为社会的一员,发挥“分享”、“共有”的各种可能。车与...


智能家居为何需要大数据, 大数据在智能家居领域的贡献是什么?

大数据分为大数据存储和大数据分析,属于两种截然不同的计算机技术领域,大数据存储用于大数据分析。大数据存储重点在于研发可以扩展至PB甚至EB级别的数据存储平台;大数据分析关注在...


物联网、人工智能时代来临 五大隐忧不可不提防

随物联网/人工智能时代来临,“弱人工智能”已先渗入人类生活,各界不得不更早审视所有可能影响人工智能范畴,...


孩子王到娱乐霸主!看“迪斯尼乐园”成功的两大关键

2013年迪斯尼研发了智能服务系统,整合了网站、手机应用及魔法手环三部分,形成一个典型的物联网系统...


马云:云计算和大数据将是21世纪的石油

马云认为,数据在21世纪,就会像上一个世纪的石油一样,“起初没人关心石油能用来干嘛”,但是之后会成为极具价...


人工智能混搭自动农业机械,会是未来农业的理想型吗?

美国农机新创公司 Abundant 就发明了“采苹果机器人“,它具有经机器学习调教过的视觉算法,能精准判断每一个苹果...


智慧农业进行式:物联网+大数据,怎么成为农业迈向未来的起跑点?

相信物联之家读者对物联网的科技趋势一点不陌生,但运用在农渔畜牧业中,物联网技术大幅提高了环境资料收集能...


全球物联网时代,农业走向智慧 如何跨领域跨专业“打群架”?

近十年被称为物联网时代,全球商机上看1.5兆美元,各行各业纷纷投入资源做数字化发展,而台湾农业在研发技术占...


机器会沟通、数据会预测?再谈工业 4.0 是什么

工业 4.0 其实亦希望做到将整个流程全自动化,例如机器之间懂得自动交换情报并进行决定,除物联网之外,另一最为...


智慧安全 提前阻挡意外 精准严密守护 (案例)

透过庞大数据数据的加以分析与比对,预测防范犯罪或意外的发生,更可能破解恐怖分子攻击的意图与目标地点等重...


工业、企业、消费者领域物联网安全趋势分析

对消费者来说,物联网有助于提升生活的舒适度、改善生活方式,并节省开销。对产业来说,物联网能增进效率、节...


公共安全物联网:利用数据让城市更安全

2017年10月1日,拉斯维加斯市曼德勒海湾酒店附近发生枪击事件。截止10月3日,枪案已造成至少59人死亡,527人受伤 。...


智能制造跃进 工业4.0与物联网、大数据虚实整合

在工业4.0与物联网、大数据等科技的带动下,硬件革新、 软件升级、软硬整合不断演进,智能制造已成为不可挡的主...