close
当前位置: 物联网在线 > 技术文库 >

蓝牙网状网络中的设备管理(2)

所有蓝牙网状设备(包括Provisioner)都支持FIPS P-256Elliptic Curve算法,因此必须具有公钥。基于该算法的非对称密码术被用于创建安全通道,通过该通道来执行剩余的provisioning过程。为此,Provisioner和设备交换其公共密钥。请注意,设备可能会通过带外方法(如QR码)提供其公钥。我们将在后面的蓝牙网状网络系列文章中关注网状网安全性,包括配置安全性。

步骤4:授权

Provisioner利用其对新设备功能的知识并向其发送消息,指示消息输出单个或多个数值以响应各种支持的用户动作之一,例如按下按钮。根据设备的不同,输出的值会有所不同。一个设备可能在LED面板上显示一个三位数字值,而另一个设备可能会多次闪烁红色LED,闪烁次数为输出验证值。Provisioner的用户将观察设备输出的值,并将其输入到Provisioner用户界面。

然后,设备和Provisioner交换一个加密哈希,该加密哈希由包含由该设备输出的随机值的数据导出,从而允许它们完成其认证。

步骤5:分配Provisioning数据

在authentication成功完成之后,会话密钥由两个设备中的每一个从它们的私钥和交换的对等公钥得出。会话密钥随后用于保护完成供应过程所需的数据的后续分配,包括设备的NetKey和唯一地址(称为UnicastAddress)。

配置完成后,配置的设备拥有网络的NetKey,这是一个被称为IVIndex的蓝牙网状网安全参数,它具有由Provisioner分配的UnicastAddress[iii]。新设备现在正式成为节点和蓝牙网状网络的成员。

从网络中移除节点

蓝牙网状网络的节点需要被删除。该设备可能已经损坏,需要更换,或者可能需要将该设备移到其他城市另一家办事处的另一个蓝牙网络网络。同样,该设备可能已经出售,预计新的拥有者将使用上述供应过程将设备添加到他们自己的蓝牙网状网络。

“”

有时候有些设备会损坏

如果设备出现故障而无法修复,您可能会试图将其扔到垃圾箱中。如果您将设备出售给某人,您也同样可能只想拿钱,忘记旧设备。然而,这是不明智的。

节点包含通过供应过程提供的安全密钥。请记住,它是拥有主要的NetKey,它确定一个设备是一个网络的成员,因此有权访问它。丢弃或销售设备时,将与您的蓝牙网络网络相关的密钥留在设备内可能会使您的网络容易受到攻击。因此,已经定义了一个消除节点的安全过程,这个过程将在这里进行描述。

从网络中删除节点涉及两个步骤。首先,Provisioner应用程序用于将要删除的节点添加到“黑名单”中。其次,启动一个称为密钥刷新过程的过程。

黑名单

使用Provisioner,用户必须将要删除的节点添加到黑名单中。黑名单的目的只是充当那些在启动密钥刷新过程时不能用新的安全密钥发布的节点的列表。

The Key Refresh Procedure

秘钥刷新过程

密钥刷新过程导致网络中的所有节点(黑名单的成员除外)被发布新的网络密钥,应用密钥和所有相关的派生数据。换句话说,构成网络和应用程序安全基础的整套安全密钥被替换。

用户使用Provisioner启动密钥刷新,Provisioner使用配置消息创建新密钥并将其发送到网状网络中的每个节点,但黑名单的成员除外。

低功率节点将接收他们的Friend的新密钥。因此,在接收它们之前可能需要相当长的时间,因此整个网络都要更换密钥。

由于每个节点不会在同一时间收到新的密钥,因此密钥刷新过程定义了一个称为“Phase 2”的过渡阶段,在此过程中使用旧密钥和新密钥。具体而言,传输使用新密钥,但支持接收消息的节点同时使用旧密钥和新密钥。

Provisioner通知所有节点,当Phase2完成时,它们应撤销旧密钥,并且每个非黑名单的节点都收到其新密钥。

此时,从网络中删除并且包含旧的NetKey和旧的AppKeys的节点不再是网络的成员,因此不构成威胁。

结论

安全性是蓝牙网状网络技术设计的核心。我们已经看到了这种情况如何在网络管理场景中最基本的地方体现出来,将新设备添加到蓝牙网状网络并将其删除。

本文转载自:SiliconLabs
转载地址:
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编进行处理。


(责任编辑:ioter)

用户喜欢...

本文和大家一起探讨IoT网络的几个重要特征

网络是IoT设备非常关键的部分,本文和大家一起探讨IoT网络的几个重要特征,及AliOS Things尝试提供的一些解决方案。 IoT网络的特征包括IP网络,UDP网络,多种通信手段及拓扑。而AliOS Things也尝试...


神经网络入门指南

人工神经网络(ANN)是一种从信息处理角度对人脑神经元网络进行抽象从而建立的某种简单模型,按不同的连接方式组成不同的网络。其在语音识别、计算机视觉和文本处理等方面取得的突破...


深度卷积神经网络在目标检测中的进展

近些年来,深度卷积神经网络(DCNN)在图像分类和识别上取得了很显著的提高。回顾从2014到2016这两年多的时间,先后涌现出了R-CNN,Fast R-CNN, Faster R-CNN, ION, HyperNet, SDP-CRC, YOLO,G-CNN, SSD等越来...


蓝牙mesh | “三大法宝“让你的网络无懈可击

随着我们越来越深入物联网(IoT)领域,无论是新技术还是现有的技术,对安全这一问题的关注从未停止过。如果用户和提供商数据存在任何风险,那么灵活性、能源效率和互通性等优势便无...


一步一步学用Tensorflow构建卷积神经网络

摘要: 本文主要和大家分享如何使用Tensorflow从头开始构建和训练卷积神经网络。这样就可以将这个知识作为一个构建块来创造有趣的深度学习应用程序了。 0. 简介 在过去,我写的主要都是...


初学者必读:卷积神经网络指南(一)

摘要: 何为卷积神经网络,它来自何方?又要走向何处?跟着作者的节奏,一起来开始探索CNN吧。 卷积神经网络听起来像一个奇怪的生物学和数学的组合,但它是计算机视觉领域最具影响力...


面向密码逻辑阵列的可编程控制网络设计与实现

作者:刘 露,徐金甫,李 伟,杨宇航;2017年电子技术应用第10期 摘 要: 为解决粗粒度密码逻辑阵列控制开销大、控制效率低的问题,在研究主流阵列处理架构下三层控制模型的基础上,提...


理解神经网络中的Dropout

dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃。注意是暂时,对于随机梯度下降来说,由于是随机丢弃,故而每一个mini-batch都在训练不...


了解神经网络,你需要知道的名词都在这里

近日,Mate Labs 联合创始人兼 CTO 在 Medium 上撰文《Everything you need to know about Neural Networks》,从神经元到 Epoch,扼要介绍了神经网络的主要核心术语。 理解什么是人工智能,以及机器学习和深...


【原创深度】僵尸网络引发物联网安全大战:再谈嵌入式安全

贸泽电子 Majeed Ahmad 物联网(IoT)僵尸网络(botnet)的兴起已经成为智能家庭,智慧城市和工业网络化等新兴产业的安全威胁。僵尸网络的分布式拒绝服务(DDoS)攻击已有时日,而且针对物联...