close
当前位置: 物联网在线 > 技术文库 >

精密数据采集信号链上的噪声

在很多应用中,模拟前端接收单端或差分信号,并执行所需的增益或衰减、抗混叠滤波及电平转换,之后在满量程电平下驱动ADC输入端。

今天我们探讨下精密数据采集信号链的噪声分析,并深入研究这种信号链的总噪声贡献。

如图1所示,低功耗、低噪声、全差分放大器ADA4940-1驱动差分输入、18位、1 MSPS PulSAR® ADC AD7982,同时低噪声精密5 V基准电压源ADR435用来提供ADC所需的5 V电源。此信号链无需额外驱动器级和基准电压缓冲器,简化了模拟信号调理,可节省电路板空间和成本。一个单极点截止频率2.7 MHz RC(22 Ω,2.7 nF)低通滤波器放在ADC驱动器输出和ADC输入之间,有助于限制ADC输入端噪声,并减少来自逐次逼近型(SAR) ADC输入端容性DAC的反冲。

“图1.

图1. 低功耗全差分18位1 MSPS数据采集信号链 (简化示意图:未显示所有连接和去耦)

计算与分析

ADA4940-1用作ADC驱动器时,用户可以进行必要的信号调理,包括对信号实施电平转换和衰减或放大,以便使用四个电阻实现更大动态范围,从而不再需要额外的驱动器级。采用反馈电阻(R2 = R4)对增益电阻(R1 = R3)之比设置增益,其中R1 = R2 =R3 = R4 = 1 kΩ。

对于平衡差分输入信号,等效输入阻抗为2×增益电阻(R1或R3)= 2 kΩ,对于非平衡(单端)输入信号,等效阻抗根据下式计算,约为1.33 kΩ。

“”

如果需要可以在输入端并联一个终端电阻。

ADA4940-1内部共模反馈环路强制共模输出电压等于施加到VOCM输入的电压,同时提供出色的输出平衡。当两个反馈系数(β1和β2)不相等时,差分输出电压取决于VOCM;此时,输出幅度或相位的任何不平衡都会在输出端产生不良共模成分,导致差分输出中有冗余噪声和失调。因此,在这种情况下(即,β1 =β2),输入源阻抗和R1 (R3)的组合应等于1 kΩ,以避免各输出信号的共模电压失配,并防止ADA4940-1的共模噪声增加。

信号在印刷电路板(PCB)的走线以及长电缆中传输时,系统噪声会叠加到信号中,差分输入ADC会抑制信号噪声,并表现为一个共模电压。

这款18位1 MSPS数据采集系统的预期信噪比(SNR)理论值可通过每个噪声源(ADA4940-1、ADR435和AD7982)的和方根(RSS)计算得到。

ADA4940-1在100 kHz时的低噪声性能典型值为3.9 nV/√Hz,如图2所示。

“图2.

图2. ADA4940输入电压噪声频谱密度和频率的关系

必须计算差分放大器的噪声增益,以便找到等效输出噪声贡献。

差分放大器的噪声增益为:

其中

以及

是两个反馈系数。

考虑下列差分放大器噪声源

由于ADA4940-1输入电压噪声为3.9 nV/√Hz,其差分输出噪声应当为7.8 nV/√Hz。ADA4940-1数据手册中的共模输入电压噪声(eOCM)为83 nV/√Hz,因此其输出噪声为:

给定带宽条件下,R1、R2、R3和R4电阻噪声可根据约翰逊-奈奎斯特噪声方程计算:

其中kB是玻尔兹曼常数(1.38065 × 10 – 23 J/K),T为电阻绝对温度 (开尔文),而R为电阻值(Ω)。

来自反馈电阻的噪声为:

来自R1的噪声为:

来自R3的噪声为:

ADA4940-1数据手册中的电流噪声为0.81 pA/√Hz。

反相输入电压噪声:

同相输入电压噪声:

因此,来自ADA4940的等效输出噪声贡献为:

(RC滤波器之后)的ADC输入端总积分噪声为:


(责任编辑:ioter)

用户喜欢...

小信号放大应用中运放选择的关注点

在运放选型中,一些常用的指标选择比较简单,例如根据自身供电选择供电电源、根据增益及带宽选择增益带宽积(GBW)、根据精度要求选择等效输入噪声电压/电流、根据空间选择封装等等。...


FPGA差分信号缓冲的转换(IBUFDS、IBUFGDS和OBUFDS)

IBUFDS、IBUFGDS和OBUFDS都是差分信号缓冲器,用于不同电平接口之间的缓冲和转换。 IBUFDS 是差分输入的时候用; OBUFDS 是差分输出的时候用; IBUFGDS 则是时钟信号专用的输入缓冲器。 下面详细说明...


这九条高速PCB信号走线规则,你未必懂?

规则一:高速信号走线屏蔽规则 在高速的PCB设计中,时钟等关键的高速信号线,走线需要进行屏蔽处理,如果没有屏蔽或只屏蔽了部分,都会造成EMI的泄漏。建议屏蔽线,每1000mil,打孔接地...


pcb layout初学者如何理解差分信号

随着半导体技术和深压微米工艺的不断发展,IC的开关速度目前已经从几十M H z增加到几百M H z,甚至达到几GH z。在高速PCB设计中,工程师经常会碰到误触发、阻尼振荡、过冲、欠冲、串扰等信号...


讨论如何针对精密逐次逼近型ADC设计基准电压源电路

高分辨率、逐次逼近型ADC的整体精度取决于精度、稳定性和其基准电压源的驱动能力。ADC基准电压输入端的开关电容具有动态负载,因此基准电压源电路必须能够处理与时间和吞吐速率相关的电...


元器件如何连接系统的FPGA、微控制器或数 字信号处理器(DSP)?

ADI 公司面向设计工程师提供 评估板 和 应用软件 ,简化新设计 的元器件选型过程。完成初始评估后,设计的某些方面通常需 要进一步研究。元器件如何连接系统的FPGA、微控制器或数 字信号处...


基于成ADAS3022解决多通道数据采集系统设计中遇到的诸多难题

可编程逻辑控制器(PLC)是很多工业自动化和过程控制系统的核心,可监控和控制复杂的系统变量。基于PLC的系统采用多个传感器和执行器,可测量和控制模拟过程变量,例如压力、温度和流量。...


精密SAR ADC AD400x 解决系统级的技术挑战

了解ADI最新的精密SAR ADC AD400x系列,它结合了简单易用的功能和行业领先的高精度性能、低功耗和小尺寸,用于解决系统级的技术挑战。...


基于eMMC的128路数据采集系统设计

作者:侯天喜,李锦明,马 林,降 帅;2017年电子技术应用第9期 摘 要: 针对水下模拟船舱相关参数的高速多次采集存储任务,设计了一种基于eMMC的多通道数据采集系统。该系统以FPGA为主控...


数字功率因数校正和精密功率计量功能

采用ADP1048。了解如何利用灵活的数字控制PFC(功率因数校正)引擎、精密输入计量功能和图形用户界面(GUI)简化智能电源管理系统的部署...